
Copyright© 2012 KRvW Associates, LLC

Hands-on Security Tools
SecAppDev 2012

Copyright© 2012 KRvW Associates, LLC

Caveats and Warnings

This is not a sales pitch for any product(s)
– If you want to talk to a sales person, tell me
–Otherwise, you will NOT get calls or spam
You are not authorized to “test” any systems other
than your own
–If you do, then don’t call me from prison
– I don’t know you

2

Copyright© 2012 KRvW Associates, LLC

Prerequisites

Computer (shared or solo)
–Windows, OS X, Linux
–Local admin access
Virtual machine environment (Vmware, Parallels,
Virtual Box)
JRE 1.5+
Development environment (for source analysis
tool)
–C or Java
–Make, Ant, Eclipse (3 or 2), Visual Studio, etc

3

Copyright© 2012 KRvW Associates, LLC

Objectives and Intros

We’ll look at several
tools
Idea is to give
everyone a glimpse of
several tools
–NOT to turn anyone into

an expert on any tool
Safe, sales-free env
Flow
–Describe each tool

–Demo (where applicable)
–Class tries tool with

specific objectives
–Discuss results and

applicability

4

Copyright© 2012 KRvW Associates, LLC

Secondary Goals

Learn
Experiment with the tools
Judge for yourself
Have fun

5

Copyright© 2012 KRvW Associates, LLC

Setup environment

We’ll use a combination of stuff
–Virtual Machine - OWASP’s WTE
–Desktop installation of Fortify
Virtual machine tips
–Allocate at least 1 Gb to the VM
–Either disable network or use shared net through host OS

6

Copyright© 2012 KRvW Associates, LLC

Software security tools

Categories include
–Static code analysis tools
–Testing tools

lApplication proxy tools
lFuzzers

7

Copyright© 2012 KRvW Associates, LLC

Web application testing

First, the manual approach
–A lot of times, there’s no substitute for this
–Kind of like a single-stepping debugger
Testing proxies are useful
–Man-in-the-middle between browser and app
Examples
–WebScarab, ZAP

8

Copyright© 2012 KRvW Associates, LLC

The tools we’ll use

OWASP tools (freely available)
–Your web browser (IE or Firefox preferred)
–WebGoat -- a simple web application containing

numerous flaws and exercises to exploit them
lRuns on (included) Apache Tomcat J2EE server

–WebScarab -- a web application testing proxy
Instructor demo
Class installation of both tools

9

Copyright© 2012 KRvW Associates, LLC

WebGoat

Copyright© 2012 KRvW Associates, LLC

Setting up WebGoat (general)

Run WebGoat on TCP port 80
–From WebGoat folder (GUI or command line)

lWindows: webgoat_80.bat
lOS X or Linux: sudo ./webgoat.sh start80

– (Will need to chmod +x webgoat.sh first)
lVerify in browser http://localhost/webgoat/attack

At this point, WebGoat is running, but you’ll still
need a testing proxy to perform some attacks

11

Copyright© 2012 KRvW Associates, LLC

WebScarab

Copyright© 2012 KRvW Associates, LLC

Next, set up WebScarab

Run WebScarab
–Default listener runs on TCP port 8008
–Ensure listener is running within WebScarab
Configure proxy
–Set web browser proxy point to TCP port 8008 on

127.0.0.1 (localhost)
– Include proxy for localhost
–Connect once again to http://localhost:8080/WebGoat/

attack

13

Copyright© 2012 KRvW Associates, LLC

Troubleshooting

Scarab not running
–Listener turned off or on wrong port
Browser proxy not configured or misconfigured
–IE behaves differently than Firefox

l IE 7 often “misbehaves”
–Make sure proxy is set for localhost and 127.0.0.1
–Try using 127.0.0.1. (note the “.” at end)
–Turn off anti-phishing or “safe browsing” features
–Ensure JavaScript is running
–Try Firefox if you are an IE user, and vice versa

14

Copyright© 2012 KRvW Associates, LLC

WebGoat tips

Report card shows overall progress
Don’t be afraid to use the “hints” button
–Show cookies and parameters can also help
–Show java also helpful
–None of these are typical on real apps…
Learn how to use it
Fabulous learning tool

15

Copyright© 2012 KRvW Associates, LLC

Familiarizing Goat and Scarab

WebGoat
–Do “Web Basics” exercise
–Try Hints and other buttons
–Look at report card

16

Copyright© 2012 KRvW Associates, LLC

Cross site scripting (“XSS”)

Can occur whenever a
user can enter data into a
web app
– Consider all the ways a

user can get data to the app
When data is represented
in browser, “data” can be
dangerous
– Consider this user input

<script>

alert(document.cookie)

</script>

Where can it happen?
– ANY data input

Two forms of XSS
– Stored XSS
– Reflected XSS

Two WebGoat exercises
to see for yourself

Copyright© 2012 KRvW Associates, LLC

Stored XSS

Attacker inputs script
data on web app
–Forums, “Contact Us”

pages are prime
examples

–All data input must be
considered

Victim accidentally
views data
–Forum message, user

profile, database field
Can be years later
–Malicious payload lies

patiently in wait
–Victim can be anywhere

18

Copyright© 2012 KRvW Associates, LLC

Stored XSS exercise

Copyright© 2012 KRvW Associates, LLC

Reflected XSS

Attacker inserts script
data into web app
App immediately
“reflects” data back
–Search engines prime

example
–“String not found”

–Generally combined with
other delivery
mechanisms
–HTML formatted spam

most likely
– Image tags containing

search string as HTML
parameter
lConsider width=0

height=0 IMG SRC

20

Copyright© 2012 KRvW Associates, LLC

Reflected XSS exercise

Copyright© 2012 KRvW Associates, LLC

Fuzzers −1

Growing field of app testing that involves sending
malformed data to/from app
–Tools, frameworks, and APIs are popping up
–“One size fits all” approach is highly problematic

l Informed fuzzing vs. uninformed fuzzing
–Still early adoption among pen testers (arguably)
–Dev knowledge is necessary to get most of it

22

Copyright© 2012 KRvW Associates, LLC

Fuzzers −2

–Fuzzing can and should be done from unit to entire app
tests

–QA test team needs to acquire and learn
Examples
–OWASP’s JBroFuzz, PEACH, SPI Fuzzer, GPF,

Codenomicon, Mu Security, SPIKE, Sulley

“At Microsoft, about 20 to 25 percent of security
bugs are found through fuzzing a product before it

is shipped”
23

Copyright© 2012 KRvW Associates, LLC

JBroFuzz

http://www.owasp.org/index.php/
Category:OWASP_JBroFuzz
Open source from OWASP
Simplistic, but can fuzz
–Fields in any web app form
–URL guessing

24

Copyright© 2012 KRvW Associates, LLC

Static code analyzers −1

Review source code for common coding bugs
–A bit of history

l1999: First examples appear from research projects
– E.g., ITS4, RATS, Flawfinder
– Tokenize input streams and perform rudimentary signature analysis
– Accurate at finding strcpy() and the like, but lacking context to really be useful

25

Copyright© 2012 KRvW Associates, LLC

Static code analyzers −2
l2001: “2nd generation” tools arrive

– E.g., Fortify, Ounce Labs, Coverity
– Parse and build abstract syntax tree for analysis
– Enables execution flow, data flow, etc., traces
– Significant leap forward, but much work remains
– Hundreds of common bugs in several languages
– Management tools for overseeing, measuring, and policy enforcement
– Integration into popular IDEs

lStill, many are shelfware

26

Copyright© 2012 KRvW Associates, LLC

Static code analyzers −4

–Then do large scale analysis at project completion
–Possibly using more than one tool set
Examples
–Fortify SCA, Ounce Labs Ounce 5, Coverity Prevent,

Klocwork

27

Copyright© 2012 KRvW Associates, LLC

Fortify SCA

http://fortify.com
Commercial source code analyzer
Supports numerous platforms, languages,
compilers, and IDEs
License caveats for this class
Other features: security manager, rule builder

28

Copyright© 2012 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

29

